当前期刊数: 93
1. 引言
syntax-parser 是一个 JS 版语法解析器生成器,具有分词、语法树解析的能力。
通过两个例子介绍它的功能。
第一个例子是创建一个词法解析器 myLexer
:
1 |
|
如上,通过正则分别匹配了 “空格”、“字母或数字”、“加号”,并将匹配到的空格忽略(不输出)。
分词匹配是从左到右的,优先匹配数组的第一项,依此类推。
接下来使用 myLexer
:
1 |
|
'a + b'
会按照上面定义的 “三种类型” 被分割为数组,数组的每一项都包含了原始值以及其位置。
第二个例子是创建一个语法解析器 myParser
:
1 |
|
利用 chain
函数书写文法表达式:通过字面量的匹配(比如 +
号),以及 matchTokenType
来模糊匹配我们上面词法解析出的 “三种类型”,就形成了完整的文法表达式。
syntax-parser
还提供了其他几个有用的函数,比如 many
optional
分别表示匹配多次和匹配零或一次。
接下来使用 myParser
:
1 |
|
2. 精读
按照下面的思路大纲进行源码解读:
- 词法解析
- 词汇与概念
- 分词器
- 语法解析
- 词汇与概念
- 重新做一套 “JS 执行引擎”
- 实现 Chain 函数
- 引擎执行
- 何时算执行完
- “或” 逻辑的实现
- many, optional, plus 的实现
- 错误提示 & 输入推荐
- First 集优化
词法解析
词法解析有点像 NLP 中分词,但比分词简单的时,词法解析的分词逻辑是明确的,一般用正则片段表达。
词汇与概念
- Lexer:词法解析器。
- Token:分词后的词素,包括
value:值
、position:位置
、type:类型
。
分词器
分词器 createLexer
函数接收的是一个正则数组,因此思路是遍历数组,一段一段匹配字符串。
我们需要这几个函数:
1 |
|
tokenize
是入口函数,循环调用 getNextToken
匹配 Token 并裁剪字符串直到字符串被裁完。
语法解析
语法解析是基于词法解析的,输入是 Tokens,根据文法规则依次匹配 Token,当 Token 匹配完且完全符合文法规范后,语法树就出来了。
词法解析器生成器就是 “生成词法解析器的工具”,只要输入规定的文法描述,内部引擎会自动做掉其余的事。
这个生成器的难点在于,匹配 “或” 逻辑失败时,调用栈需要恢复到失败前的位置,而 JS 引擎中调用栈不受代码控制,因此代码需要在模拟引擎中执行。
词汇与概念
- Parser:语法解析器。
- ChainNode:连续匹配,执行链四节点之一。
- TreeNode:匹配其一,执行链四节点之一。
- FunctionNode:函数节点,执行链四节点之一。
- MatchNode:匹配字面量或某一类型的 Token,执行链四节点之一。每一次正确的 Match 匹配都会消耗一个 Token。
重新做一套 “JS 执行引擎”
为什么要重新做一套 JS 执行引擎?看下面的代码:
1 |
|
假设 chain('a')
可以匹配 Token a
,而 chain(functionC))
可以匹配到 Token c
。
当输入为 a b y c
时,我们该怎么写 tree
函数呢?
我们期望匹配到 functionB1
时失败,再尝试 functionB2
,直到有一个成功为止。
那么 tree
函数可能是这样的:
1 |
|
不断尝试 tree
中内容,直到能正确匹配结果后返回这个结果。由于正确的匹配会消耗 Token,因此需要在执行前后存储当前 Tokens 内容,在执行失败时恢复 Token 并尝试新的执行链路。
这样看去很容易,不是吗?
然而,下面这个例子会打破这个美好的假设,让我们稍稍换几个值吧:
1 |
|
输入仍然是 a b y c
,看看会发生什么?
线路 functionA -> functionB1
是 a b y
很显然匹配会通过,但连上 functionC
后结果就是 a b y y c
,显然不符合输入。
此时正确的线路应该是 functionA -> functionB2 -> functionC
,结果才是 a b y c
!
我们看 functionA -> functionB1 -> functionC
链路,当执行到 functionC
时才发现匹配错了,此时想要回到 functionB2
门也没有!因为 tree(functionB1(), functionB2())
的执行堆栈已退出,再也找不回来了。
所以需要模拟一个执行引擎,在遇到分叉路口时,将 functionB2
保存下来,随时可以回到这个节点重新执行。
实现 Chain 函数
用链表设计 Chain
函数是最佳的选择,我们要模拟 JS 调用栈了。
1 |
|
上面的例子只改动了一小点,那就是函数不会立即执行。
chain
将函数转化为 FunctionNode
,将字面量 a
或 b
转化为 MatchNode
,将 []
转化为 TreeNode
,将自己转化为 ChainNode
。
我们就得到了如下的链表:
1 |
|
至于为什么
FunctionNode
不直接展开成MatchNode
,请思考这样的描述:const list = () => chain(',', list)
。直接展开则陷入递归死循环,实际上 Tokens 数量总有限,用到再展开总能匹配尽 Token,而不会无限展开下去。
那么需要一个函数,将 chain
函数接收的不同参数转化为对应 Node 节点:
1 |
|
引擎执行
引擎执行其实就是访问链表,通过 visit
函数是最佳手段。
1 |
|
由于
visit
函数执行次数至多可能几百万次,因此使用tailCallOptimize
进行尾递归优化,防止内存或堆栈溢出。
visit
函数只负责访问节点本身,而 visitChildNode
函数负责访问节点的子节点(如果有),而 visitNextNodeFromParent
函数负责在没有子节点时,找到父级节点的下一个子节点访问。
1 |
|
可以看到 visitChildNode
与 visitNextNodeFromParent
函数都只处理好了自己的事情,而将其他工作交给别的函数完成,这样函数间职责分明,代码也更易懂。
有了 vist
visitChildNode
与 visitNextNodeFromParent
,就完成了节点的访问、子节点的访问、以及当没有子节点时,追溯到上层节点的访问。
何时算执行完
当 visitNextNodeFromParent
函数访问到 END 位
时,是时候做一个了结了:
- 当 Tokens 正好消耗完,完美匹配成功。
- Tokens 没消耗完,匹配失败。
- 还有一种失败情况,是
Chance
用光时,结合下面的 “或” 逻辑一起说。
“或” 逻辑的实现
“或” 逻辑是重构 JS 引擎的原因,现在这个问题被很好解决掉了。
1 |
|
比如上面的代码,当遇到 []
数组结构时,被认为是 “或” 逻辑,子元素存储在 TreeNode
节点中。
在 visitChildNode
函数中,与 ChainNode
不同之处在于,访问 TreeNode
子节点时,还会调用 addChances
方法,为下一个子元素存储执行状态,以便未来恢复到这个节点继续执行。
addChances
维护了一个池子,调用是先进后出:
1 |
|
与 addChance
相对的就是 tryChance
。
下面两种情况会调用 tryChances
:
MatchNode
匹配失败。节点匹配失败是最常见的失败情况,但如果chances
池还有存档,就可以恢复过去继续尝试。- 没有下一个节点了,但 Tokens 还没消耗完,也说明匹配失败了,此时调用
tryChances
继续尝试。
我们看看神奇的存档回复函数 tryChances
是如何做的:
1 |
|
tryChances
其实很简单,除了没有 chances
就失败外,找到最近的一个 chance
节点,恢复 Token 指针位置并 visit
这个节点就等价于读档。
many, optional, plus 的实现
这三个方法实现的也很精妙。
先看可选函数 optional
:
1 |
|
可以看到,可选参数实际上就是一个 TreeNode
,也就是:
1 |
|
为什么呢?因为当 'a'
匹配失败后,true
是一个不消耗 Token 一定成功的匹配,整体来看就是 “可选” 的意思。
进一步解释下,如果
'a'
没有匹配上,则true
一定能匹配上,匹配true
等于什么都没匹配,就等同于这个表达式不存在。
再看匹配一或多个的函数 plus
:
1 |
|
能看出来吗?plus
函数等价于一个新递归函数。也就是:
1 |
|
通过不断递归自身的方式匹配到尽可能多的元素,而每一层的 optional
保证了任意一层匹配失败后可以及时跳到下一个文法,不会失败。
最后看匹配多个的函数 many
:
1 |
|
many
就是 optional
的 plus
,不是吗?
这三个神奇的函数都利用了已有功能实现,建议每个函数留一分钟左右时间思考为什么。
错误提示 & 输入推荐
错误提示与输入推荐类似,都是给出错误位置或光标位置后期待的输入。
输入推荐,就是给定字符串与光标位置,给出光标后期待内容的功能。
首先通过光标位置找到光标的 **上一个 Token
**,再通过 findNextMatchNodes
找到这个 Token
后所有可能匹配到的 MatchNode
,这就是推荐结果。
那么如何实现 findNextMatchNodes
呢?看下面:
1 |
|
所谓找到后续节点,就是通过 Visit
找到所有的 MatchNode
,而 MatchNode
只要匹配一次即可,因为我们只要找到第一层级的 MatchNode
。
通过每次匹配后执行 tryChances
,就可以找到所有 MatchNode
节点了!
再看错误提示,我们要记录最后出错的位置,再采用输入推荐即可。
但光标所在的位置是期望输入点,这个输入点也应该参与语法树的生成,而错误提示不包含光标,所以我们要 执行两次 visit
。
举个例子:
1 |
|
|
是光标位置,此时语句内容是 select from b;
显然是错误的,但光标位置应该给出提示,给出提示就需要正确解析语法树,所以对于提示功能,我们需要将光标位置考虑进去一起解析。因此一共有两次解析。
First 集优化
构建 First 集是个自下而上的过程,当访问到 MatchNode
节点时,其值就是其父节点的一个 First 值,当父节点的 First 集收集完毕后,,就会触发它的父节点 First 集收集判断,如此递归,最后完成 First 集收集的是最顶级节点。
篇幅原因,不再赘述,可以看 这张图。
3. 总结
这篇文章是对 《手写 SQL 编译器》 系列的总结,从源码角度的总结!
该系列的每篇文章都以图文的方式介绍了各技术细节,可以作为补充阅读:
- 精读《手写 SQL 编译器 - 词法分析》
- 精读《手写 SQL 编译器 - 文法介绍》
- 精读《手写 SQL 编译器 - 语法分析》
- 精读《手写 SQL 编译器 - 回溯》
- 精读《手写 SQL 编译器 - 语法树》
- 精读《手写 SQL 编译器 - 错误提示》
- 精读《手写 SQL 编译器 - 性能优化之缓存》
- 精读《手写 SQL 编译器 - 智能提示》
如果你想参与讨论,请点击这里,每周都有新的主题,周末或周一发布。前端精读 - 帮你筛选靠谱的内容。